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Abstract- In this paper, we study a Gaussian channel with memory and with noiseless feedback, for which
we present a coding scheme to achieve thestationary feedback capacity(the maximum information rate over all
stationaryinput distributions, conjectured to be the asymptotic feedback capacity). The coding scheme essentially
implements the celebrated Kalman filter algorithm; is equivalent to an estimation system over the same channel
without feedback; and reveals that the achievable information rate of the feedback communication system can be
alternatively given by the decay rate of the Cramer-Rao bound of the associated estimation system. Thus, combined
with the control theoretic characterizations of feedback communication (proposed by Elia), this implies that the
fundamental limitations in feedback communication, estimation, and control coincide. In addition, the proposed
coding scheme simplifies the coding complexity and shortensthe coding delay, and its construction amounts to
solving a finite-dimensional optimization problem. We alsoprovide a further simplification to the optimal input
distribution developed by Yang, Kavcic, and Tatikonda.

I. I NTRODUCTION

Communication systems in which the transmitter have access to noiseless feedback of channel
outputs have been widely studied; see [1]–[13] and references therein for the study of Gaussian
channels with feedback. [1], [2] proposed ingenious feedback codes for additive white Gaussian
noise (AWGN) channels, which achieve the asymptotic feedback capacity (denotedC∞) and
greatly reduce the coding complexity and delay. [5] provided a rather general coding structure to
achieve the finite-horizon feedback capacity (denotedCT ) for channels with memory; however,
it involves prohibitive computation complexity as the coding length(T + 1) increases.

[9] proved that the maximum directed information is the feedback capacity; reformulated the
problem of findingCT as a stochastic control optimization problem; and proposeda dynamic
programming based solution. This idea was further exploredin [10], which uncovered the
Markov property of the optimal input distribution for Gaussian channels with memory and
eventually reduced the finite-horizon stochastic control optimization problem to a manageable
size. Moreover, under astationarity conjecturethatC∞ equals the stationary feedback capacity
(denotedCs, the maximum rate over allstationary input distributions),C∞ is given by the
solution of a finite dimensional optimization problem. Thisis the first computationally efficient
2 method to calculateC∞ or CT for general Gaussian channels. [13] studied first-order moving-
average Gaussian channels with feedback and discovered theclosed-form expression forC∞.

[11] investigated the tracking of unstable sources over a channel and proposed the
notion of anytime capacityto capture the fundamental limitations in that problem, which
reveals connections between communication and control andbrings new insights to feedback
communication problems. Furthermore, [12] established the equivalencebetween feedback
communication and feedback stabilization over Gaussian channels with memory, showed that
the achievable transmission rate is given by the Bode sensitivity integral, and presented an
optimization problem based on robust control to compute lower bounds ofCT . [12] also extended
the codes in [1], [2] to achieve these lower bounds.

As we can see, it remains an open problem to build a coding scheme with reasonable
complexity to achieveC∞ or Cs for a Gaussian channel with memory; note that no practical
codes have been found based on the optimal signalling strategy in [10]. In this paper, we
propose a coding scheme for Gaussian channels with noiseless feedback. This coding scheme
achievesCs, thestationaryfeedback capacity of the channel; utilizes the Kalman filteralgorithm;
simplifies the coding processes; and shortens coding delay.The optimal coding structure is
essentially a finite-dimensional linear time-invariant (FDLTI) system, and leads to a further

1This research was supported by NSF under Grant ECS-0093950. The authors would like to thank Anant Sahai, Sekhar
Tatikonda, Sanjoy Mitter, Murti Salapaka, Zhengdao Wang, Shaohua Yang, and Young-Han Kim for useful discussion.

2Here we do not mean their optimization problem is convex. In fact the computation complexity forCT is O(T ), and for
C∞ the complexity is determined mainly by the channel order.

514



simplification of the optimal stationary signalling strategy in [10]. The construction of the coding
system amounts to solving a finite-dimensional optimization problem. Our solution holds for
AWGN channels with intersymbol interference (ISI) where theISI is modeled as a stable and
minimum-phase FDLTI system.3

The problem of achievingC∞ remains open, because a proof confirming the stationarity
conjecture is missing. However, our study of achievingCs, the main focus of this paper, is
justified by its great simplifications in the coding systems design and operation and by the
numerical evidence thatCs indeed equalsC∞.

We remark that our optimal coding design may be derived by applying the control-oriented
approach in [12] to the results in [10]. To highlight other important aspects of the coding design,
however, we follow a less direct route to derive the scheme, that is, we first present finite-horizon
analysis of the feedback communication problem, and then let the horizon tend to infinity.

In our finite-horizon analysis, we establish the necessity of the Kalman filter: The Kalman
filter is not only a device to provide sufficient statistics (which was shown in [10]), but also
a device to ensure the power efficiency and to recover the message optimally. Additionally,
the presence of Kalman filter in our coding scheme reveals theintrinsic connections between
feedback communication, estimation, and control. In particular, we show that the feedback
communication problem over a Gaussian channel is essentially an optimal estimation problem,
and the achievable rate of the feedback communication system is alternatively given by the
decay rate of the Cramer-Rao bound (CRB) for the associated estimation system. Invoking
the Bode sensitivity characterization of achievable rate [12], we conclude that the fundamental
limitations in feedback communication, estimation, and control coincide. We then extend the
horizon to infinity and characterize the steady-state of thefeedback communication problem.
We finally show that our optimal scheme achievesCs.

We denote byyT the vector{y0, y1, · · · , yT}, and{yt} the sequence{yt}
∞
t=0. For a random

vectoryT , we denote its covariance matrix asK
(T )
y . We denote “defined to be” as “:=”.

II. CHANNEL MODEL

Fig. 1 shows a single-input single-output AWGN channel with ISI, denoted asF . It is
described in state-space as

F :

{
st+1 = Fst + Gut, s0 = 0
yt = Hst + ut + Nt,

(1)

Nt

Hz

ytstst

F

G

ut

Fig. 1. State-space description ofF .

whereF ∈ R
m×m, m is thedimensionor order of F , ut is the channel input,st is the channel

state,Nt is AWGN andNt ∼ N (0, 1), andyt is the channel output. The transfer function from
u to y, denotedZ(z)−1, is stable and minimum-phase.4 In matrix form, we have

F : yT = Z−1
T uT + NT (2)

for any block size(T + 1), whereZ−1
T ∈ R

(T+1)×(T+1) is a lower-triangular Toeplitz matrix of
impulse response ofZ(z)−1, and has diagonal elements all equal to 1 (and thus is invertible).
We may abuse the notationZ−1 for both Z(z)−1 andZ−1

T . We focus on the casem ≥ 1; the
casem = 0 was solved in [1], [2].

3Through the equivalence shown in [9], [10], this is equivalent to colored Gaussian channels with rational noise power
spectrums and without ISI; the rationalness assumption is not too restrictive since any power spectrum can be arbitrarily
approximated by rational ones.

4We useZ−1 here to reserveZ for the filter generating colored noise in a colored Gaussian channel, forfuture use purpose.
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III. PROBLEM FORMULATION IN STEADY-STATE AND THE SOLUTION

Before formulating the steady-state communication problem, we distinguish among the three
scenarios: Finite-horizon (i.e. finite coding length), infinite-horizon (i.e. infinite coding length),
and steady state. Finite-horizon problems often have time-dependent (i.e. time-varying), horizon-
dependent solutions, see e.g. finite-horizon Kalman filtering. The horizon-dependence may be
removed in the infinite-horizon scenario, and furthermore,the time-dependence may be removed
in the steady-state scenario. Therefore, we focus onfinding a (stationary, time-invariant) steady-
state solution, and truncate it and employ the truncation if the practical problem is in finite-
horizon but the horizon is large enough. This truncated solution would greatly simplify the
implementation while having a performance sufficiently close to finite-horizon optimality.

A. Problem formulation
For a Gaussian channel with feedback, the channel input has the form

ut = γtu
t−1 + ηty

t−1 + ξt (3)

for any γt ∈ R
1×t, ηt ∈ R

1×t, and zero-mean Gaussian random variableξt ∈ R which is
independent ofut−1 andyt−1 [9], [10]. The channel inputs are allowed to depend on the channel
outputs in a strictly causal manner. Our objective in this paper is todesign encoder/decoder to
achieve the stationary feedback capacity, given by

Cs := Cs(P) := sup lim
T→∞

1

T + 1
I(uT → yT ), subject toP∞ := lim

T→∞

1

T + 1
EuT ′uT ≤ P (4)

for any stationary{ut} in the form of (3). HereP > 0 is the power budget andI(uT → yT ) is
the directed information fromuT to yT [9]. Note thatCs is well defined [10].

The problem of solvingCs may be equivalently formulated as minimizing the average channel
input power while keeping the rate bounded from below, namely for R > 0,

Pmin(R) := inf lim
T→∞

1

T + 1
EuT ′uT , subject to lim

T→∞

1

T + 1
I(uT → yT ) ≥ R (5)

for any stationary{ut} in the form of (3). ThereforePmin(R) is the inverse function ofCs(P),
i.e., Cs(Pmin(R)) = R.

It is conjectured that a stationary sequence{ut} achievesC∞ (C∞ := limn→∞ CT exists by
superadditivity ofCT [13]). However, a rigorous proof is not available. Our studyof the steady-
state problem avoids that technical difficulty and leads to ahorizon-independent, time-invariant
solution, greatly reducing the implementation complexity.

B. The coding scheme
The encoder/decoder structure:In state-space, the encoder and decoder are described as

Encoder:






xt+1 = Axt, x0 := W
rt = Cxt

ut = rt − r̂t

Decoder:






ŝt+1 = F ŝt + L2et, ŝ0 = 0
et = yt − Hŝt

x̂t+1 = Ax̂t + L1et, x̂0 = 0
r̂t = Cx̂t

Ŵt = A−tx̂t,

(6)

whereA ∈ R
(n+1)×(n+1), C ∈ R

1×(n+1), L1 ∈ R
n+1, L2 ∈ R

m, andW ∼ N (0, In+1). We call
(n+1) the encoder dimension. See Fig. 2 for the block diagram. Note that−r̂t is the feedback
from the decoder based on the channel outputyt−1, and−r̂t = G∗

t y
t whereG∗

t is a strictly
lower triangular Toeplitz matrix. HereA,C, ut, etc. depends onn, however, we do not specify
the dependence explicitly to simplify notations.

Optimal choice of parameters:Fix a desired rateR. Let DI := 2R andn := m − 1, and
solve the optimization problem

[aaaopt
f , Σopt] := arg inf

aaaf∈Rn
DΣD

′,

s.t. Σ=AΣA′−AΣC′CΣA′/(CΣC′+1)
(7)
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Fig. 2. The encoder/decoder structure forF .

where

A :=

[
A 0

GC F

]
, C := [ C H ] , D := [ C 0 ] , A :=

[
0n×1 In

±DI aaaf

]
, C :=

[
1 01×n

]
, (8)

Note that we need to solve the problem twice (one for+DI in A and one for−DI in A),
and choose the optimal solution as the one with the smaller objective function value. Then we
obtain the optimalAopt according toaaaopt

f , and let(n∗+1) be the number of unstable eigenvalues
in Aopt, wheren∗ ≥ 0. Let n := n∗, solve the above optimization problem again, letA∗ be the
newly obtainedAopt, and formA

∗. UsingΣ∗ (the newly obtainedΣopt) andC
∗ := [1, 01×n∗ , H],

we obtain
L∗ := [L∗

1
′, L∗

2
′]′ := A

∗Σ∗
C

∗′/(C∗Σ∗
C

∗′ + 1). (9)

It holds that(A∗, C∗) is observable, andA∗ has exactly(n∗ + 1) unstable eigenvalues.
We assign the encoder/decoder parameters by letting

A := A∗, C := C∗ := [1, 01×n∗ ], L1 := L∗
1, L2 := L∗

2. (10)

We then drive the initial conditions0 of channelF to zero. Now we are ready to communicate
at a rateR using powerPmin(R) = D

∗Σ∗
D

∗′ whereD
∗ := [C∗, 0].

Encoding/Decoding process:The designed communication system can transmit either an
analog source or a digital message. In the former case, we assume that the encoder wishes
to convey a Gaussian random vector through the channel and the decoder wishes to learn the
random vector, which is a rate-distortion problem. The coding process is as follows. Assume that
the to-be-conveyed messageW is distributed asN (0, In∗+1) (noting that any non-degenerate
(n∗ + 1)-variate Gaussian vectorW can be transformed in this form). Assume that the coding
length is (T + 1). To encode, letx0 := W . Then run the system till time epochT . To
decode, letŴt := x̂0,t for t = 0, 1, · · · , T . The quantities of interest include the square-error
distortion MSE(Ŵt) := E(W − Ŵt)(W − Ŵt)

′. In the case of transmitting a digital message,
the encoding/decoding can be done in a partitioned hypercube, see e.g. [1], [12].

C. Coding theorem
Theorem 1. Construct the encoder/decoder shown in Fig. 2 usingn∗, A∗, C∗, L∗

1, andL∗
2. Then

under the power constraintEu2 ≤ P,
i) The coding scheme transmits an analog sourceW ∼ N (0, In∗+1) from the encoder to

the decoder at rateCs(P), with MSE distortionD(Cs(P)), whereD(·) is the distortion-rate
function;

ii) The coding scheme can transmit digital message from the encoder to the decoder at a
rate arbitrarily close toCs(P), with PET decays to zero doubly exponentially.

The proof of the theorem will be developed in the next four sections. In Section IV, we
consider a general coding structure in finite-horizon whichmay be viewed as a generalization
of our optimal coding structure. We show that this general structure essentially contains a
Kalman filter. The presence of the Kalman filter links the feedback communication problem to
an estimation problem and a control problem, and hence we rewrite the information rate in terms
of estimation theory quantities and control theory quantities; see Section V. Sections IV and V
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are focused on finite-horizon. In Section VI, we extend the horizon to infinity and characterize
the steady-state behaviors. Then in Section VII, we show that our optimal encoder/decoder
design is actually the solution to the steady-state communication problem.

IV. N ECESSITY OFKALMAN FILTER IN OPTIMAL CODING

In this section, we consider a finite-horizon coding structure that includes our optimal design
in Section III as a special case. This general structure is useful since: 1) searching over all
possible parameters in the general structure achievesCs; 2) we can show that to ensure power
efficiency (to be explained), the general structure necessarily contains a Kalman filter.

A. A general coding structure
Fig. 3 illustrates the general coding structure, includingthe encoder and thefeedback

generator, a portion of the decoder. Below, we fix the time horizon to be{0, 1, · · · , T} and
describe the coding structure.

Nt

Hz
ytst

F

G
ut

F

GT

A

z

W
xt

C
rt

rt

Fig. 3. A general coding structure forF .

Encoder: Let the encoder dimension(n + 1) satisfy 0 ≤ n ≤ T . We assume thatW ∼
N (0, In+1), A ∈ R

(n+1)×(n+1), C ∈ R
1×(n+1), (A,C) is observable, and none of the eigenvalues

of A are in the unit circle or at the locations of the eigenvalues of F . We denote the observability
matrix for (A,C) as Γn := [C ′, A′C ′, · · · , An′C ′]′, and let Γ := [C ′, A′C ′, · · · , AT ′C ′]′ and
K

(T )
r := ErT rT ′. Therefore,Γn is invertible,Γ has rank(n + 1), rT = ΓW , andK

(T )
r = ΓΓ′.

Feedback generator: The feedback signal−r̂t is generated throughGT , the feedback
generator, i.e. −r̂T = GT yT . We assume thatGT ∈ R

(T+1)×(T+1) is a strictly lower triangular
matrix. Clearly, the optimal encoder/decoder can be viewed as a special case of the general
structure. Throughout the paper, the above assumptions arealways assumed.

Definition 1. Consider the system shown in Fig. 3. Define

CT,n := CT,n(P) := sup
A∈R(n+1)×(n+1),C,GT

1

T + 1
I(W ; yT )

s.t. EuT ′uT /(T+1)≤P

(11)

and define its inverse function asPT,n(R).

In other words,CT,n is the finite-horizon capacity (in the information sense) for a fixed
transmitter dimension. It is not hard to show thatCn,n = Cn and hencelimn→∞ Cn,n = C.
Moreover, limT→∞ CT,n := C∞,n is well defined andlimn→∞ C∞,n = Cs (details skipped for
brevity).

B. The presence of Kalman filter
We first compute the mutual information in the general codingstructure.

Proposition 1. Consider the general coding structure in Fig. 3. Fix any0 ≤ n ≤ T . For any
fixed (A,C) and GT , it holds that

I(W ; yT ) = I(uT → yT ) =
1

2
log |I + Z−1

T K(T )
r Z−1′

T |. (12)

Proof: Since(A,C) is observable,W andrT determine each other, soI(W ; yT ) = I(rT ; yT ).
Note thatyT = (I − Z−1

T GT )−1(Z−1
T rT + NT ) and |I − Z−1

T GT | = 1. Then the result follows
from direct computation.

Proposition 1 says thatI(W ; yT ) is independent ofGT , and dependent only onK(T )
r or

equivalently on(A,C). Thus, fixed(A,C) implies fixed rate, and hence the feedback generator
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GT has to be chosen to minimize the average channel input power,which turns out to be a
Kalman filter for an associated estimation problem. Let us defineRT (A,C) := I(W ; yT )/(T+1)
for a fixed (A,C).

Proposition 2. Consider the general coding structure in Fig. 3. Fix any0 ≤ n ≤ T ,
i)

PT,n(R) = inf
A,C,GT :=G∗

T
(A,C)

1

T + 1
EuT ′uT

s.t. RT (A,C)≥R

(13)

whereG∗
T (A,C) is the optimal feedback generator for a given(A,C), defined as

G∗
T (A,C) := arg inf

(A,C)fixed,GT

1

T + 1
EuT ′uT . (14)

ii)
G∗

T (A,C) = −Ĝ∗
T (A,C)(I −Z−1

T Ĝ∗
T (A,C))−1, (15)

whereĜ∗
T (A,C) is the strictly causal MMSE estimator (Kalman filter) ofrT given ȳT , i.e.,

Ĝ∗
T (A,C) := arg inf

ĜT∈R(T+1)×(T+1)

1

T + 1
E(rT − ĜT ȳT )(rT − ĜT ȳT )′, (16)

whereĜT is strictly lower triangular andȳT := Z−1
T rT + NT . See Fig. 4 (a) for the associated

estimation problem and (b) forG∗
T (A,C).

Nt

Hz

F

G

F

A

z

W
xt

C
rt st yt

GT
rt

(a)

GT A,C

yt

F,L ,t,H,

xt

st
-

-

rtet
A, L ,t,C,

(b)
Fig. 4. (a) An estimation problem over channelF . (b) The Kalman filter based feedback generatorG

∗

T (A, C). Here
(A,−L1,t, C, 0) with x̂t denotes a state-space representation withx̂t being its state at timet, and x̂0 being 0; see (17)
and (19) forL1,t andL2,t.

Proposition 2 i) says that, we may reformulate the feedback capacity problem as, in step 1,
fixing (A,C), i.e. fixing the rate, and minimizing the input power by searching overG, and in
step 2, searching over all possible(A,C) subject to the rate constraint. Therole of the feedback
generatorG for any fixed(A,C) is to minimize the input power. Then ii) solves the optimal
feedback generatorG∗

T (A,C) by considering theequivalentoptimal estimation problem in Fig.
4 (a), whose solution is the Kalman filter. Notice that we alsoobtain the MMSE estimate ofW
by (??), so the Kalman filter leads to bothpower efficiencyandbest estimate of the message.

Proof: i) follows from the definitions ofPT,n(R) andG∗
T (A,C) and Proposition 1. ii) Noting

that uT = rT − r̂T = rT − ĜT ȳT , EuT uT ′ is the MSE of estimatingrT based on observation
ȳT . Thus Ĝ∗

T must be the strictly causal MMSE estimator (with one-step prediction).

V. FEEDBACK RATE, CRB, AND BODE INTEGRAL

We have shown that in the general coding structure, to ensurepower efficiency for a fixed
(A,C), we need to design a Kalman-filter based feedback generator.The necessity of the Kalman
filter is not surprising given the previous indications in [2], [4], [9], [11], [14], etc. However, the
Kalman filter immediately links the feedback communicationproblem to estimation and control
problems. In this section, we present aunified representationfor the general coding structure
(with G := G∗(A,C)), its estimation theory counterpart, and its control theory counterpart.
Then we will establish connections among the information theory quantities, estimation theory
quantities, and control theory quantities.
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In Fig. 3, fix (A,C) and letG := G∗(A,C). Define x̃t := xt − x̂t and s̃t := st − ŝt, and

A :=

[
A 0

GC F

]
, Lt :=

[
L1,t

L2,t

]
, C := [ C H ] , D := [ C 0 ] , Xt :=

[
x̃t

s̃t

]
. (17)

The equivalence between the communication system in Fig. 3 and the estimation system in Fig.
4 leads to the unified representation of the two systems:





Xt+1 = (A − LtC)Xt − LtNt = AXt − Ltet, X0 := [W ′, 0′]′

et = CXt + Nt

ut = DXt.
(18)

(18) may also be viewed as a control system where we want to minimize the power ofu by
appropriately choosingLt. This is aminimum energy controlproblem [15]. Hereet is called the
innovation(this innovation differs from those defined in [5] or [10]), which plays a significant
role in Kalman filtering. One fact is that{et} is a white process, that is, its covariance matrix
K

(T )
e is a diagonal matrix. Another fact is thateT and yT determine each other causally, and

thush(eT ) = h(yT ) and |K(T )
y | = |K(T )

e |. Let Σt := EXtX
′
t, then it holds that

Σt+1 = AΣtA
′ −

AΣtC
′
CΣtA

′

CΣtC
′ + 1

, Lt :=
AΣtC

′

Ke,t

, Ke,t := E(et)
2 = CΣtC

′ + 1 (19)

Proposition 3. For any fixed0 ≤ n ≤ T and (A,C), it holds that

I(W ; yT ) =
1

2

T∑

t=0

log Ke,t =
1

2

T∑

t=0

log(CΣtC
′ + 1) =

1

2
log |IW,T |

=
1

2
log |CRBW,T |

−1 =
1

2
log |MSEW,T |

−1;

PT,n(A,C) =
1

T + 1

T∑

t=0

DΣtD
′ =

1

T + 1

T∑

t=0

CAtMSEW,tA
t′C ′,

(20)

whereIW,T is the Bayesian Fisher information matrix ofW , andCRBW,T is the Bayesian CRB
of W [16].

This proposition connects the mutual information to the innovation process and to the Fisher
information, (minimum) MSE, and CRB. As a consequence, the finite-horizon feedback capacity
CT,n is then linked to the smallest possible Bayesian CRB, i.e. the smallest possible estimation
error covariance, and thus the fundamental limitation in information theory is linked to the
fundamental limitation in estimation theory.

Proof: Note h(yT ) = h(eT ), Ke,t = CΣtC
′ + 1, andE(ut)

2 = DΣtD
′ = CE(x̃t)

2C ′. For the
estimation problem̄yT = Z−1

T ΓW + NT , MSEW,T can be computed by Th. 12.1 of [17].
VI. A SYMPTOTIC BEHAVIORS OF THE SYSTEM

By far we have completed our analysis in finite-horizon. We have shown that the optimal
encoder/decoder must contain a Kalman filter, and connectedthe feedback communication
problem to an estimation problem and a control problems. Below, we consider the steady-
state communication problem, by studying the limiting behavior (T going to infinity) of the
finite-horizon solution while fixing the encoder dimension(n + 1).

A. Asymptotic behaviors of the systems
The time-varying (singular) Kalman filter in (18) convergesto a steady-state (cf. [18]), namely

(18) is stabilized in closed-loop,ut, et, andyt will converge to steady-state distributions, and
Σt, Lt, G∗

t (A,C), Ĝ∗
t , and Ke,t will converge to their steady-state values, for example,L :=

AΣC
′/Ke, Ke = CΣC

′ + 1, andΣ is the unique stabilizing solution to the Riccati equation

Σ = AΣA
′ − AΣC

′
CΣA

′/(CΣC
′ + 1). (21)

Thus (18) has the same asymptotic behavior as the LTI system obtained by lettingLt = L for
all t. This LTI system is easy to analyze (e.g., it allows transferfunction based study) and to
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implement. The result in the steady-state minimum-energy control problem says that the transfer
function fromN to e is anall-passfunction in the form of

TNe(z) =
k∏

i=0

z − ai

z − a−1
i

(22)

whereak
0 are the unstable eigenvalues ofA or A (noting thatF is stable).

Now fix (A,C) and let the horizonT in the general coding structure go to infinity. LetH(e)
be the entropy rate of{et}, DI(A) :=

∏k
i=0 |ai| be thedegree of instabilityof A, andS(e2πjθ)

be the spectrum of the sensitivity function [12].

Proposition 4. Consider the general coding structure in Fig. 3. For anyn ≥ 0 and (A,C),

R∞,n(A,C) := lim
T→∞

1

T + 1
I(W ; yT ) = H(e)

= log DI(A) =

∫ 1
2

− 1
2

log S(e2πjθ)dθ =
1

2
log(CΣC

′ + 1)

= lim
T→∞

log |IW,T |

2(T + 1)
= − lim

T→∞

log |MSEW,T |

2(T + 1)
= − lim

T→∞

log |CRBW,T |

2(T + 1)
;

P∞,n(A,C) := lim
T→∞

1

T + 1
EuT u′

T = DΣD
′.

(23)

Proposition 4 links the asymptotic feedback rate to the entropy rate of the innovation process,
to the degree of instability and Bode sensitivity integral [12], to the asymptotic increasing rate
of Fisher information, and to the asymptotic decay rate of MSE and of CRB.

The presence of stable eigenvalues inA does not affect the rate (see also [12]). Stable
eigenvalues do not affectP∞,n(A,C), either, since the initial condition response associated
with the stable eigenvalues can be tracked with zero power (i.e. zero MSE). So, we can achieve
C∞,n by a sequence of purely unstable(A,C), and hence the communication problem is related
to the tracking of unstable source over a communication channel [11], [12].

Proof: i) By (22), the power spectrum of{et} is flat with magnitudeDI(A)2. Then the
results follow from [12], the Grenander-Szego theorem, andthe Cesaro mean [20].

VII. A CHIEVABILITY OF Cs

In this section, we will first prove thatC∞,m−1 = Cs, which will lead to the optimality of our
encoder/decoder design in Section III in the information sense, and then show that our design
achievesCs in the operational sense.

A. The optimal Gauss-Markov signalling strategy
[10] proved that for each input in the form of (3), there exists a Gauss-Markov (GM) input

that leads to the same directed information and same input power. The GM input takes the form

ut = d′
ts̃s,t + Et, (24)

wheredt ∈ R
m is a time-varying gain;{Et} is a zero-mean white Gaussian process andEt is

independent onN t−1, ut−1, andyt−1; and s̃s,t is generated by a Kalman filter




s̃s,t := st − ŝs,t

ŝs,t+1 = F ŝs,t + Ls,tet, ŝs,0 = 0
et = yt − Hŝs,t,

(25)

If one letsdt = t andK
(t)
E = KE for all t, then the search over all possibled andKE solvesCs.

We remark that [10] was focused more on the structure of the optimal input distribution and
capacity computation, instead of designing a coding scheme; how to encode/decode a message
(rather than using a random coding argument) is not clear from [10].

Now we claim thatKE = 0, namely{Et} vanishes in steady-state.6 This leads to a further
simplification of the results in [10].

6KE = 0 was also conjectured and numerically verified by Shaohua Yang (personal communication).
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Proposition 5. For the GM input (24) to achieveCs, it must hold thatKE = 0.

Proof: (sketch) Assume that for someKE 6= 0, the GM input can achieveCs. Fix the
corresponding optimizingS, T , L2, andd. We can show that this leads to: 1) The whiteness of
{ỹt}; 2) Ls,2 = G; 3) KE = 0 and hence contradiction.

The vanishing of{Et} in steady-state helps us to show that, in our general coding structure,
the encoder dimension needs not be higher than the channel dimension in order to achieveCs,
namely to achieveCs we needA to have at mostm unstable eigenvalues. This also follows
that the control-oriented communication scheme in [12] canachieveCs.

Proposition 6. For channelF with order m ≥ 1, C∞,n = Cs for n ≥ m − 1.

Proof: (sketch) We rewrite the general coding structure (withG := G∗(A,C)) as in Fig. 5
(a), and rewrite the system driven by the GM optimal input (with E = 0) as in Fig. 5 (b). Note
that the presence ofW does not affect the steady-state. It is then clear that the dimension ofA
needs not be greater than the dimension ofF .

ut
Z

F,L ,t,H,-

et

Nt

yt
A, L ,t,C,

W

(a)

ut
Z

F,L ,t,H,-

et

Nt

yt
F Gdt, L ,t, dt,

(b)
Fig. 5. (a) A transform of the block diagram of the general coding structure. (b) An equivalent form of the communication
system driven by GM inputs.

B. AchievingCs

In this subsection, we show that our coding scheme achievesCs in the information sense as
well as in the operational sense.

Proposition 7. For the coding scheme described in Theorem 1,R∞,n∗(A∗, C∗) = Cs(P) and
P∞,n∗(A∗, C∗) = P.

Proof: From Proposition 6, the optimization

[Aopt, Copt, Σopt] := arginf
A,C

DΣD
′,

s.t. (21),log DI(A)≥R
(26)

with n = m − 1 attainsPmin(R). Note that the stable eigenvalues (if any) inAopt can be
removed without affecting the optimality. Moreover, without loss of generality, we may assume
that (A,C) is in the observable canonical form. Additionally, imposing an = ±2R guarantees
that log DI(A) ≥ R. Then the optimization (7) achievesPmin(R).

Proposition 8. The system constructed in Theorem 1 transmits the analog source W ∼ N (0, I)
at a rateCs(P), with MSE distortionD(Cs(P)), whereD(·) is the distortion-rate function.

Proof: Note that MSE(Ŵt) = A−t−1Σx,t+1A
′−t−1 and henceR is no smaller thanlog | det A|.

HereΣx,t+1 := [I, 0]Σt+1[I, 0]′.

Proposition 9. The system constructed in Theorem 1 transmits a digital message W from
the transmitter to the receiver at a rate arbitrarily close to Cs(P) with PET decays doubly
exponentially.

Proof: The proof is in essence a Schalkwijk-Kailath type argument [2], [12], [13]. We can
also show that

PET = 1 −
n∏

i=0

(1 − 2Q(
σ−ǫ

T,i

2
)), (27)

where σT,i is the ith eigenvalue of MSEW,T . Thus, if MSEW,T decays to zero exponentially
(which is indeed the case),PET decays to zero doubly exponentially.
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Note that, in both the analog and digital communication case, the coding length needed
for a pre-specified performance level can be pre-determinedsinceΣ∗

x,T can be solved off-line.
Moreover, because the probability of error decays doubly exponentially, it leads to much shorter
coding length than forward transmission.

VIII. C ONCLUSIONS AND FUTURE WORK

We presented a coding scheme to achieve the stationary feedback capacity for a Gaussian
channel with feedback. The scheme is essentially the Kalmanfilter algorithm, and its construc-
tion involves only a finite dimensional optimization problem. We established connections to
estimation and control, and in particular, the encoder may be seen as a control system, and the
decoder may be seen as an estimation system, as pointed by Sanjoy Mitter and in [11], [21].
We have seen that concepts in estimation theory and control theory, such as MMSE, CRB,
minimum-energy control, etc., are useful in studying a feedback communication system. We
also verified the results by simulations (not reported here).

Our ongoing research includes convexifying the optimization problem (7) to reduce the
computation complexity, and finding a more feasible scheme to fight against feedback noise
while keeping the feedback signal bounded. In future, we will further explore the connections
among information, estimation, and control in more generalsetups (such as MIMO channels
with feedback).

REFERENCES

[1] J.P.M. Schalkwijk and T. Kailath. A coding scheme for additive noisechannels with feedback Part I: No bandwidth
constraint.IEEE Trans. Inform. Theory, IT-12:172–182, 1966.

[2] J.P.M. Schalkwijk. A coding scheme for additive noise channels withfeedback Part II:Bandlimited signals.IEEE Trans.
Inform. Theory, IT-12:183–189, 1966.

[3] J. Omura. Optimum linear transmission of Analog data for channels withfeedback.IEEE Trans. Inform. Theory, 14:38-43,
1968.

[4] S.A. Butman. Linear feedback rate bounds for regressive channels. IEEE Trans. Inform. Theory, IT-22:363–366, 1976.
[5] T. Cover and S. Pombra. Gaussian feedback capacity.IEEE Trans. Inform. Theory, IT-35:37–43, 1989.
[6] L.H. Ozarow. Random coding for Gaussian channels with feedback. IEEE Trans. Inform. Theory, 36:17–22, 1988.
[7] G. Kramer. Feedback strategies for white Gaussian interference networks. IEEE Trans. Inform. Theory, 48:1423–1438,

2002.
[8] A. Shahar-Doron and M. Feder. On a capacity achieving scheme for the colored Gaussian channel with feedback.Proc.

ISIT, page 74, 2004.
[9] S. Tatikonda and S. Mitter. The capacity of channels with feedback.IEEE Trans. Inform. Theory, submitted 2001.

[10] S. Yang, A. Kavcic, and S. Tatikonda. Feedback capacity of power constrained Gaussian channels with memory.IEEE
Trans. Inform. Theory, submitted 2003.

[11] A. Sahai.Anytime Information Theory. PhD thesis, MIT, 2001.
[12] N. Elia. When Bode meets Shannon: Control-oriented feedback communication schemes.IEEE Trans. Autom. Contr.,

49:1477–1488, 2004.
[13] Young-Han Kim. The feedback capacity of the first-order MA Gaussian channel.http://arxiv.org/abs/cs/0411036, 2004.
[14] S. Mitter and N. Newton. Information and entropy flow in the Kalman-Bucy filter. J. of Stat. Phys., 118:145-176, 2005.
[15] H. Kwakernaak and R. Sivan.Linear Optimal Control Systems. John Wiley & Sons, 1972.
[16] H. L. Van Trees.Detection, Estimation, and Modulation Theory, Part I. John Wiley and Sons, 1968.
[17] S. M. Kay. Fundamentals of Statistical Signal Processing I: Estimation Theory. Prentice-Hall PTR, 1998.
[18] K. Gallivan, X. Rao, and P. Van Dooren. Singular riccati equations stabilizing large-scale systems.Lin. Alg. Appl., 2005.
[19] T. Kailath, A. Sayed, and B. Hassibi.Linear Estimation. Prentice Hall, 2000.
[20] T. Cover and J. Thomas.Elements of Information Theory. John Wiley & Sons, 1991.
[21] S. Tatikonda, and S. Mitter. Control over noisy channels.IEEE Trans. Autom. Contr., 49:1196 - 1201, 2004.
[22] N. Elia. The information cost of disturbance rejection.Mediterranean Conference on Control and Automation, 2005.

523


	--------------------
	Main Menu
	Foreword
	43 Years of Allerton
	Table of Contents
	List of Authors
	Search Help
	--------------------

