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Abstract- In this paper, we study a Gaussian channel with memory anld moiseless feedback, for which
we present a coding scheme to achieve dtaionary feedback capacifghe maximum information rate over all
stationaryinput distributions, conjectured to be the asymptotic Baak capacity). The coding scheme essentially
implements the celebrated Kalman filter algorithm; is egigint to an estimation system over the same channel
without feedback; and reveals that the achievable infdonatate of the feedback communication system can be
alternatively given by the decay rate of the Cramer-Rao tbafrihe associated estimation system. Thus, combined
with the control theoretic characterizations of feedbacknmunication (proposed by Elia), this implies that the
fundamental limitations in feedback communication, eation, and control coincide. In addition, the proposed
coding scheme simplifies the coding complexity and shortbascoding delay, and its construction amounts to
solving a finite-dimensional optimization problem. We afsovide a further simplification to the optimal input
distribution developed by Yang, Kavcic, and Tatikonda.

. INTRODUCTION

Communication systems in which the transmitter have acoeassiseless feedback of channel
outputs have been widely studied; see [1]-[13] and refa®tiverein for the study of Gaussian
channels with feedback. [1], [2] proposed ingenious feellzades for additive white Gaussian
noise (AWGN) channels, which achieve the asymptotic feekllzapacity (denoted’,.,) and
greatly reduce the coding complexity and delay. [5] prodideather general coding structure to
achieve the finite-horizon feedback capacity (dendiedl for channels with memory; however,
it involves prohibitive computation complexity as the aaglilength(7 + 1) increases.

[9] proved that the maximum directed information is the temck capacity; reformulated the
problem of findingC7 as a stochastic control optimization problem; and prop@segnamic
programming based solution. This idea was further exploredilO], which uncovered the
Markov property of the optimal input distribution for Gaigs channels with memory and
eventually reduced the finite-horizon stochastic contpinization problem to a manageable
size. Moreover, under stationarity conjecturghat C',, equals the stationary feedback capacity
(denotedC, the maximum rate over aBtationaryinput distributions),C., is given by the
solution of a finite dimensional optimization problem. Théghe first computationally efficient
2 method to calculaté’,, or O for general Gaussian channels. [13] studied first-orderimgev
average Gaussian channels with feedback and discoveredother-form expression far',..

[11] investigated the tracking of unstable sources over ancbl and proposed the
notion of anytime capacityto capture the fundamental limitations in that problem, chhi
reveals connections between communication and controlbaings new insights to feedback
communication problems. Furthermore, [12] establishesl équivalencebetween feedback
communication and feedback stabilization over Gaussiamméls with memory, showed that
the achievable transmission rate is given by the Bode setsitntegral, and presented an
optimization problem based on robust control to computesldwounds of’';. [12] also extended
the codes in [1], [2] to achieve these lower bounds.

As we can see, it remains an open problem to build a codingnseheith reasonable
complexity to achieve”,, or C; for a Gaussian channel with memory; note that no practical
codes have been found based on the optimal signalling gyrate [10]. In this paper, we
propose a coding scheme for Gaussian channels with nasiledback. This coding scheme
achieveg’;, thestationaryfeedback capacity of the channel; utilizes the Kalman fatgorithm;
simplifies the coding processes; and shortens coding d&lay.optimal coding structure is
essentially a finite-dimensional linear time-invarianD(H1) system, and leads to a further

1This research was supported by NSF under Grant ECS-00939%0aithors would like to thank Anant Sahai, Sekhar
Tatikonda, Sanjoy Mitter, Murti Salapaka, Zhengdao Wang, Shaohng, ¥ad Young-Han Kim for useful discussion.

2Here we do not mean their optimization problem is convex. In fact the atatipn complexity forCr is O(T), and for
Cs the complexity is determined mainly by the channel order.
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simplification of the optimal stationary signalling strggan [10]. The construction of the coding
system amounts to solving a finite-dimensional optimizagwoblem. Our solution holds for
AWGN channels with intersymbol interference (ISI) where tB&is modeled as a stable and
minimum-phase FDLTI systend.

The problem of achieving’,, remains open, because a proof confirming the stationarity
conjecture is missing. However, our study of achievitig the main focus of this paper, is
justified by its great simplifications in the coding systenesign and operation and by the
numerical evidence that, indeed equalg’,,.

We remark that our optimal coding design may be derived byyappthe control-oriented
approach in [12] to the results in [10]. To highlight othempiontant aspects of the coding design,
however, we follow a less direct route to derive the schehma,is, we first present finite-horizon
analysis of the feedback communication problem, and thethé&horizon tend to infinity.

In our finite-horizon analysis, we establish the necesditthe Kalman filter: The Kalman
filter is not only a device to provide sufficient statisticshfgh was shown in [10]), but also
a device to ensure the power efficiency and to recover the agessptimally. Additionally,
the presence of Kalman filter in our coding scheme revealsntinesic connections between
feedback communication, estimation, and control. In paldr, we show that the feedback
communication problem over a Gaussian channel is esdgrdialoptimal estimation problem,
and the achievable rate of the feedback communication raygealternatively given by the
decay rate of the Cramer-Rao bound (CRB) for the associated @stmmsystem. Invoking
the Bode sensitivity characterization of achievable raf,[ive conclude that the fundamental
limitations in feedback communication, estimation, andtoal coincide. We then extend the
horizon to infinity and characterize the steady-state offésglback communication problem.
We finally show that our optimal scheme achieves

We denote byy” the vector{yo, 1, --,yr}, and{y;} the sequencéy,}:°,. For a random

vectory”, we denote its covariance matrix Ksﬁﬂ. We denote “defined to be” as=".

Il. CHANNEL MODEL
Fig. 1 shows a single-input single-output AWGN channel wi8i, Idenoted asF. It is
described in state-space as

. Sty1 = FSt+GUt, 80:0
}—.{yt = Hsi+u + Ny, S

Ni

Si41
D

v ey il |4

Fig. 1. State-space description &t

where F' € R™*™ m is thedimensionor order of F, u; is the channel inputs, is the channel
state,V; is AWGN and N, ~ N(0,1), andy, is the channel output. The transfer function from
u to y, denotedZ(z)!, is stable and minimum-phastln matrix form, we have

Foyl=2z"u" 4+ NT 2)
for any block size(T + 1), where 2.t € RZ+TUx(T+1) is a lower-triangular Toeplitz matrix of
impulse response of(z)~!, and has diagonal elements all equal to 1 (and thus is ibiexti
We may abuse the notatiofi—! for both Z(z)~! and Z;'. We focus on the case: > 1; the

casem = 0 was solved in [1], [2].

3Through the equivalence shown in [9], [10], this is equivalent to emloBaussian channels with rational noise power
spectrums and without ISI; the rationalness assumption is not too restrgitice any power spectrum can be arbitrarily
approximated by rational ones.

“We useZ~! here to reserveZ for the filter generating colored noise in a colored Gaussian channdittoe use purpose.
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[1l. PROBLEM FORMULATION IN STEADY-STATE AND THE SOLUTION

Before formulating the steady-state communication problmdistinguish among the three
scenarios: Finite-horizon (i.e. finite coding length), mite-horizon (i.e. infinite coding length),
and steady state. Finite-horizon problems often have tependent (i.e. time-varying), horizon-
dependent solutions, see e.g. finite-horizon Kalman filterirhe horizon-dependence may be
removed in the infinite-horizon scenario, and furthermtre,time-dependence may be removed
in the steady-state scenario. Therefore, we focunaling a (stationary, time-invariant) steady-
state solution and truncate it and employ the truncation if the practicabpem is in finite-
horizon but the horizon is large enough. This truncated t&wiuwould greatly simplify the
implementation while having a performance sufficientlyseldo finite-horizon optimality.

A. Problem formulation
For a Gaussian channel with feedback, the channel inputheatm

=y T 4+ & 3)
for any 4, € R, n, € R and zero-mean Gaussian random variaplec R which is
independent ofi’~* andy’~! [9], [10]. The channel inputs are allowed to depend on thecbh
outputs in a strictly causal manner. Our objective in thipgras todesign encoder/decoder to
achieve the stationary feedback capacgwen by

Cs := Cs(P) :=sup hrgo %](u — y), subject toP,, := 7151;10 T—lklEUT, <P 4
for any stationary{u;} in the form of (3). HereP > 0 is the power budget anfi{u’ — y7) is
the directed information from” to y* [9]. Note thatC, is well defined [10].

The problem of solving’s may be equivalently formulated as minimizing the averagenaoel
input power while keeping the rate bounded from below, ngf@ R > 0,

Ppin(R) := inf 711_{1;0 %HEUT/ T subject to Th—{%o T;HI(UT —y ) >R (5)
for any stationary{u,} in the form of (3). Thereford’,,;,(R) is the inverse function of’;(P),
i.e., Cs(Puin(R)) = R.

It is conjectured that a stationary sequeReg} achievesC,, (Cy := lim, ., Cr exists by
superadditivity ofC'r [13]). However, a rigorous proof is not available. Our studyhe steady-
state problem avoids that technical difficulty and leads tmazon-independent, time-invariant
solution, greatly reducing the implementation complexity

B. The coding scheme
The encoder/decoder structure:In state-space, the encoder and decoder are described as

Si41 = IS+ Loey, 50=0
Ty = Axy, xo:=W e = y— Hs
Encodery » = Cux Decoder{ 241 = Az + Lie, 20 =0  (6)
Uy = =Ty T = Ciy
W, = A7z,

where A € R+Dx0+) ¢ R 1) € R Ly € R™, andW ~ N(0, 1,,1). We calll
(n+1) the encoder dlmensmrSee Flg. 2 for the block diagram. Note that, is the feedback
from the decoder based on the channel outgut, and —#* = G;y' whereG; is a strictly
lower triangular Toeplitz matrix. Herd, C, u;, etc. depends on, however, we do not specify
the dependence explicitly to simplify notations.

Optimal choice of parameters: Fix a desired ratéR. Let DI := 2% andn := m — 1, and
solve the optimization problem

opl Sopt] .__ /
[a%”, 2P argalgﬂgn D¥D, @)
s.t. zzAmuAm'czA’ /(C=C/+1)
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Fig. 2. The encoder/decoder structure Jor

where
I,

A 0 Onx1 -
A= {GC F}’C::[C H],D:=[C 0]’A::{:ED] af},C.—[l O1xn |+ (8)

Note that we need to solve the problem twice (one$dp/ in A and one for—DI in A),
and choose the optimal solution as the one with the smallgctwe function value. Then we
obtain the optimald°* according toa;ipt, and let(n*+1) be the number of unstable eigenvalues
in A°”*, wheren* > 0. Let n := n*, solve the above optimization problem again, &tbe the
newly obtainedA°?*, and formA*. Using ¥* (the newly obtained***) andC* := [1, 0+, H],
we obtain

L* =L}, Ly = A CY /(C*2*CY + 1). 9

It holds that(A*, C*) is observable, andl* has exactly(n* + 1) unstable eigenvalues.
We assign the encoder/decoder parameters by letting

A:=A"C :=C":=[1,01xpn+|, L1 :== L}, Ly := Lj,. (20)

We then drive the initial conditior, of channelF to zero. Now we are ready to communicate
at a rateR using powerP;,(R) = D*¥*D* whereD* := [C*, 0].

Encoding/Decoding processThe designed communication system can transmit either an
analog source or a digital message. In the former case, wenastghat the encoder wishes
to convey a Gaussian random vector through the channel andettoder wishes to learn the
random vector, which is a rate-distortion problem. The nggirocess is as follows. Assume that
the to-be-conveyed messagé is distributed as\V (0, I,-.1) (noting that any non-degenerate
(n* 4 1)-variate Gaussian vectd#’ can be transformed in this form). Assume that the coding
length is (T" + 1). To encode, letr, := W. Then run the system till time epoch. To
decode, let, := 2o, for t = 0,1,---,7. The quantities of interest include the square-error
distortion MSEW,) := E(W — W,)(W — W,)'. In the case of transmitting a digital message,
the encoding/decoding can be done in a partitioned hypercsde e.g. [1], [12].

C. Coding theorem
Theorem 1. Construct the encoder/decoder shown in Fig. 2 usihgA*, C*, L}, and L;. Then
under the power constraidtu? < P,

i) The coding scheme transmits an analog soufte~ N (0, I,-,1) from the encoder to
the decoder at rate”(P), with MSE distortionD(C(P)), where D(-) is the distortion-rate
function;

i) The coding scheme can transmit digital message from tieoder to the decoder at a
rate arbitrarily close toC(P), with PE; decays to zero doubly exponentially.

The proof of the theorem will be developed in the next fourtises. In Section IV, we
consider a general coding structure in finite-horizon whtdy be viewed as a generalization
of our optimal coding structure. We show that this generalcstire essentially contains a
Kalman filter. The presence of the Kalman filter links the tesck communication problem to
an estimation problem and a control problem, and hence wetegtiie information rate in terms
of estimation theory quantities and control theory quadijtsee Section V. Sections IV and V
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are focused on finite-horizon. In Section VI, we extend thazom to infinity and characterize
the steady-state behaviors. Then in Section VII, we show ¢la optimal encoder/decoder
design is actually the solution to the steady-state comaatioin problem.
IV. NECESSITY OFKALMAN FILTER IN OPTIMAL CODING

In this section, we consider a finite-horizon coding streestinat includes our optimal design
in Section lll as a special case. This general structure éulisince: 1) searching over all
possible parameters in the general structure achi€ygp) we can show that to ensure power
efficiency (to be explained), the general structure neciggmntains a Kalman filter.

A. A general coding structure

Fig. 3 illustrates the general coding structure, includihg encoder and théeedback
generator a portion of the decoder. Below, we fix the time horizon to{loel,---, 7'} and
describe the coding structure.

feedback
encoder channel generator

w NtL
2 o el @ st ]

o o {H{afe-oniar

Fig. 3. A general coding structure foF.

Encoder: Let the encoder dimensiom + 1) satisfy0 < n < 7. We assume thatV ~
N(0,I,41), A € R+Dxn+) 0 ¢ RIX(m+1) (A () is observable, and none of the eigenvalues
of A are in the unit circle or at the locations of the eigenvalueE.0WNe denote the observability
matrix for (4,C) asT, := [C", AC',---, AVC"), and letl" := [C', A'C’,---, AT'"C") and
K .= ErTrT'. Therefore I, is invertible,I' has rank(n + 1), r” = T'W, and K\ = T'T".

Feedback generator: The feedback signal-r; is generated througly,, the feedback
generator i.e. —*7 = Gry”. We assume thaf, € RT+DxT+1) js a strictly lower triangular
matrix. Clearly, the optimal encoder/decoder can be viewe@ @pecial case of the general
structure. Throughout the paper, the above assumptionahaesgs assumed.

Definition 1. Consider the system shown in Fig. 3. Define
1
Crn:=Cr,(P) = sup — (Wit
T, T, ( ) AG]R(n+1)><(n+1)7C7gTT+ 1 ( y ) (11)
sit. BuT'uT /(TH+1)<P
and define its inverse function d%,,(R).

In other words,Cr,, is the finite-horizon capacity (in the information sense) $ofixed
transmitter dimension. It is not hard to show tigt, = C,, and hencdim,,_.., C,, = C.
Moreover,lim;_.., Cr,, := Cw,, is well defined andim,,_.., Cw, = C, (details skipped for
brevity).

B. The presence of Kalman filter
We first compute the mutual information in the general coditrgcture.

Proposition 1. Consider the general coding structure in Fig. 3. Fix anyx n < T'. For any
fixed (A, C') and G, it holds that

1 ,
I(W;yh) = I(u” —y7) = 5 log |I + 2, KD z-Y. (12)

Proof: Since(A, C) is observablelV andr” determine each other, §6W; y*) = I1(r;yT).
Note thaty” = (I — Z;'Gr)" (2T + NT) and|I — Z;'Gr| = 1. Then the result follows
from direct computation. |

Proposition 1 says that(WW;y”) is independent ofj;, and dependent only oi\" or
equivalently on(A, C). Thus, fixed(A, C') implies fixed rate, and hence the feedback generator
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Gr has to be chosen to minimize the average channel input pawach turns out to be a
Kalman filter for an associated estimation problem. Let dmdeir (A4, C) := [(W;y?)/(T+1)
for a fixed (A, C).
Proposition 2. Consider the general coding structure in Fig. 3. Fix ahy n < T,
i) .
Pr,(R) = inf Eu”'u”

ACGr=05A0) T +1 (13)
s.t. RT(A,C)ER

whereg:.(A, C) is the optimal feedback generator for a givea, C'), defined as

1
Gr(A C) :=a inf L W o "
A0 rg(A,C)%iI;(ed,gTTJrl o (14)

i
Gr(A,0) = =Gr(A, O)I = Z7'G(A, O) 7, (15)

Whereg;(A,C) is the strictly causal MMSE estimator (Kalman filter) «of giveny, i.e.,

~

—~ 1 ~
% A = . f E T =T T —T\/
Gr(A,C) g A e T11 (r = Gry )(r" —Gry ), (16)

whereG; is strictly lower triangular andy” := Z7'+7 + N7. See Fig. 4 (a) for the associated
estimation problem and (b) fag;.(A, C).

G3(A,C)

unknown source channel F estimator Tt

Yt €t -7t
Nt (A,~L14,C,0) I
Tt S =
{ ¢ |~~~ H |

(a) (b)
Fig. 4. (a) An estimation problem over channgl (b) The Kalman filter based feedback generafidr(A, C). Here

(A,—L:14,C,0) with £; denotes a state-space representation wittbeing its state at time, and £, being 0; see (17)
and (19) forLy,. and Lo ;.

P—
N

(&)

}ﬂ
3

Proposition 2 i) says that, we may reformulate the feedbagacity problem as, in step 1,
fixing (A, C), i.e. fixing the rate, and minimizing the input power by séarg overG, and in
step 2, searching over all possiljlé, C') subject to the rate constraint. Thale of the feedback
generatorG for any fixed (A, C) is to minimize the input power. Then ii) solves the optimal
feedback generat@. (A, C) by considering theequivalentoptimal estimation problem in Fig.
4 (a), whose solution is the Kalman filter. Notice that we albtain the MMSE estimate di/
by (??), so the Kalman filter leads to boftower efficiencyand best estimate of the message

Proof: i) follows from the definitions ofr,,(R) andG;.(A, C') and Proposition 1. ii) Noting
thatu” = r* — 7T = o7 — Gry”, EuTu® is the MSE of estimating” based on observation
y’. ThusG; must be the strictly causal MMSE estimator (with one-stesdjmtion). |

V. FEEDBACK RATE, CRB,AND BODE INTEGRAL

We have shown that in the general coding structure, to ernsoner efficiency for a fixed
(A, C), we need to design a Kalman-filter based feedback genefé@t®necessity of the Kalman
filter is not surprising given the previous indications i, [[2], [9], [11], [14], etc. However, the
Kalman filter immediately links the feedback communicatproblem to estimation and control
problems. In this section, we presenuaified representatiofior the general coding structure
(with G := G*(A,(C)), its estimation theory counterpart, and its control tlyecounterpart.
Then we will establish connections among the informatiaotly quantities, estimation theory
guantities, and control theory quantities.
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In Fig. 3, fix (A4,C) and letG := G*(A, C). Definez; := z, — z; and 3; := s, — §;, and

A 0 Ll,t L L L j:t
T e o £

The equivalence between the communication system in Figd3tee estimation system in Fig.
4 leads to the unified representation of the two systems:

X1 = (A= LOX, — LN, = AX, — Lyey, Xo:= [W',07

et = CX;+ N, (18)

Uy = DX,.
(18) may also be viewed as a control system where we want tomzi& the power ofu by
appropriately choosing,. This is aminimum energy contrgdroblem [15]. Here; is called the
innovation(this innovation differs from those defined in [5] or [10])high plays a significant
role in Kalman filtering. One fact is thdie;} is a white process, that is, its covariance matrix
K" is a diagonal matrix. Another fact is that andy? determine each other causally, and
thus h(e?) = h(yT) and | K| = |KP|. Let £, := EX, X, then it holds that

AY,C'CY,A’ AY,C
Et+1 — AEtAI — m7 = T;, K&t = E(et)2 = (CZt(C, + 1 (19)
Proposition 3. For any fixedd < n < T and (A, C), it holds that
1 < 1 < 1
IW:yT)= =) logk, = —) log(Cx,C' +1 = —log|Z
(W;y") 2; 0g Koy 2; 0g(CT,C +1) 5 log |Zwr|
1 1
= §log\CRBWT|_1 = 51og\|v|3|3ﬂ,,T|—1; (20)
1 < 1 <
Pr.(A,C)= —— ) DD = —— A'M AV
7.0 (4, C) T+1§ t T+1§C SEy,A"C',

whereZy, r is the Bayesian Fisher information matrix @f, and CRByy 1 is the Bayesian CRB
of W [16].

This proposition connects the mutual information to theowation process and to the Fisher
information, (minimum) MSE, and CRB. As a consequence, thesfimitrizon feedback capacity
Cr,, is then linked to the smallest possible Bayesian CRB, i.e. thdlesh@ossible estimation
error covariance, and thus the fundamental limitation iforimation theory is linked to the
fundamental limitation in estimation theory.

Proof: Note h(y?) = h(eT), K., = C3,C’' + 1, andE(u;)? = DX, = CE(Z,)*C’. For the
estimation probleny” = Z'T'W + NT, MSEy+ can be computed by Th. 12.1 of [17]. B

VI. ASYMPTOTIC BEHAVIORS OF THE SYSTEM

By far we have completed our analysis in finite-horizon. Weehakiown that the optimal
encoder/decoder must contain a Kalman filter, and connettedieedback communication
problem to an estimation problem and a control problems. BBelee consider the steady-
state communication problem, by studying the limiting heta (7 going to infinity) of the
finite-horizon solution while fixing the encoder dimension+ 1).

A. Asymptotic behaviors of the systems

The time-varying (singular) Kalman filter in (18) converdes steady-state (cf. [18]), namely
(18) is stabilizedin closed-loop,u;, e, andy; will converge to steady-state distributions, and
Yy, Ly, GF(A,C), GF, and K., will converge to their steady-state values, for examgle=
AYXC'/K,, K. =CXC' + 1, and¥ is the unique stabilizing solution to the Riccati equation

Y =AYXA" — AXC'CXA"/(CEC' +1). (22)

Thus (18) has the same asymptotic behavior as the LTI systkeained by lettingL; = L for
all t. This LTI system is easy to analyze (e.g., it allows tranéfeiction based study) and to
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implement. The result in the steady-state minimum-eneogyrol problem says that the transfer
function from IV to e is anall-passfunction in the form of

k
Z — a;

Tne(z) = - 22
Ne(2) g L ai—1 (22)

wherea! are the unstable eigenvalues 4for A (noting thatZ' is stable).
Now fix (A, C) and let the horizof" in the general coding structure go to infinity. L&{e)
be the entropy rate ofe,}, DI(A) := []\_, |a:| be thedegree of instabilityof A, and S(e>"?)

be the spectrum of the sensitivity function [12].

Proposition 4. Consider the general coding structure in Fig. 3. For amy> 0 and (A, C),

: 1 T
1 ‘ 1
= log DI(A) = /2 log S(e*™%)do = ilog((CE(C/ +1)
1
2 (23)
o log|Twer[ 2- log [MSEyr| . log |CRBy 7|
= lim V= = —lim —2——7— = — lim ——F7—;
T—oo 2(T 4 1) T—oo 2(T +1) T—oo 2(T +1)
Pon(A,C) = Tlgrolo : Euruy, = DXD'.

Proposition 4 links the asymptotic feedback rate to theopytrate of the innovation process,
to the degree of instability and Bode sensitivity integrd][o the asymptotic increasing rate
of Fisher information, and to the asymptotic decay rate ofBvithd of CRB.

The presence of stable eigenvaluesAndoes not affect the rate (see also [12]). Stable
eigenvalues do not affedb, (A, C), either, since the initial condition response associated
with the stable eigenvalues can be tracked with zero powergero MSE). So, we can achieve
Cn by a sequence of purely unstatflé, C'), and hence the communication problem is related
to the tracking of unstable source over a communication rélajil], [12].

Proof: i) By (22), the power spectrum ofe;} is flat with magnitudeDI(A)?. Then the
results follow from [12], the Grenander-Szego theorem, ti@dCesaro mean [20]. |

VII. ACHIEVABILITY OF C,
In this section, we will first prove that'y, ,,,_1 = Cs, which will lead to the optimality of our
encoder/decoder design in Section Il in the informationsge and then show that our design
achieves; in the operational sense.

A. The optimal Gauss-Markov signalling strategy
[10] proved that for each input in the form of (3), there exiatGauss-Markov (GM) input
that leads to the same directed information and same inpuepdhe GM input takes the form
Up = dégs,t + &, (24)

whered, € R™ is a time-varying gain{&,} is a zero-mean white Gaussian process &nis
independent olV'™!, w~!, andy'~!; and s, is generated by a Kalman filter

Ss,t = St — Ssit
Ssit+1 = FSs,t + Ls,teta S50 = 0 (25)
€t = Ut — HSs,t;

If one letsd, = ¢t and Két) = K¢ for all ¢, then the search over all possilkl@and K¢ solvesCs.
We remark that [10] was focused more on the structure of thienap input distribution and
capacity computation, instead of designing a coding schéme& to encode/decode a message
(rather than using a random coding argument) is not clean {10].

Now we claim thatK: = 0, namely{&;} vanishes in steady-staté.This leads to a further

simplification of the results in [10].
® K¢ = 0 was also conjectured and numerically verified by Shaohua Yang (mérsommunication).

521



Proposition 5. For the GM input (24) to achievé’, it must hold thatKs = 0.

Proof: (sketch) Assume that for somEs # 0, the GM input can achievé€’;. Fix the
corresponding optimizing, T', L., andd. We can show that this leads to: 1) The whiteness of
{9:}; 2) L;» = G; 3) K¢ = 0 and hence contradiction. [ |

The vanishing of{£;} in steady-state helps us to show that, in our general codmgtare,
the encoder dimension needs not be higher than the chammehslion in order to achiev€;,
namely to achieve”’, we needA to have at mosin unstable eigenvalues. This also follows
that the control-oriented communication scheme in [12] aehieveC.

Proposition 6. For channelF with orderm > 1, Cy,,, = C, for n > m — 1.

Proof: (sketch) We rewrite the general coding structure (Wjth= G*(A,C)) as in Fig. 5
(a), and rewrite the system driven by the GM optimal inputltwi = 0) as in Fig. 5 (b). Note
that the presence d#” does not affect the steady-state. It is then clear that timemision ofA
needs not be greater than the dimensiorFof [ |

Ni
w 1] Ut et et

z & (A,~L1,,C,0) - (F + Gdy, — Loy, dy, 0)
- :

(a) (b
Fig. 5. (a) A transform of the block diagram of the general coding sirac (b) An eqw)valent form of the communication
system driven by GM inputs.

B. AchievingC
In this subsection, we show that our coding scheme achiéves the information sense as
well as in the operational sense.

Proposition 7. For the coding scheme described in TheorenRl, .- (A4*,C*) = Cs(P) and
POO’n* (A*, C*) = P
Proof: From Proposition 6, the optimization
[A°Pt CoPt 330t .= argLné DYDY,

s.t. (21),log D7[(A)2R (26)

with n = m — 1 attains P,;,(R). Note that the stable eigenvalues (if any) 4% can be
removed without affecting the optimality. Moreover, witltdoss of generality, we may assume
that (A, C) is in the observable canonical form. Additionally, impagin, = +-2% guarantees
thatlog DI(A) > R. Then the optimization (7) achieve,;,(R). [ |

Proposition 8. The system constructed in Theorem 1 transmits the analagestiti ~ N (0, I)
at a rate Cs(P), with MSE distortionD(C,(P)), whereD(-) is the distortion-rate function.

Proof: Note that MSEIV,) = A1y, 1 A1 and henceR is no smaller thartog | det A.
HereX, ;11 = [I,0]2:41[/,0]". |

Proposition 9. The system constructed in Theorem 1 transmits a digital agesd” from
the transmitter to the receiver at a rate arbitrarily close €';(P) with PE; decays doubly
exponentially.

Proof: The proof is in essence a Schalkwijk-Kailath type argum@ht[fL2], [13]. We can
also show that n

or;
PEr=1- g(l —20(%)), (27)
where o, is the ith eigenvalue of MSE,. Thus, if MSEy+ decays to zero exponentially
(which is indeed the casef Fr decays to zero doubly exponentially. |
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Note that, in both the analog and digital communication caise coding length needed
for a pre-specified performance level can be pre-determsieze; ;. can be solved off-line.
Moreover, because the probability of error decays doubbosgntially, it leads to much shorter
coding length than forward transmission.

VIIl. CONCLUSIONS AND FUTURE WORK

We presented a coding scheme to achieve the stationarydelediapacity for a Gaussian
channel with feedback. The scheme is essentially the Kalittanalgorithm, and its construc-
tion involves only a finite dimensional optimization proile We established connections to
estimation and control, and in particular, the encoder n&agden as a control system, and the
decoder may be seen as an estimation system, as pointed [oy S4itter and in [11], [21].
We have seen that concepts in estimation theory and corftealry, such as MMSE, CRB,
minimum-energy control, etc., are useful in studying a Beedtk communication system. We
also verified the results by simulations (not reported here)

Our ongoing research includes convexifying the optimaatproblem (7) to reduce the
computation complexity, and finding a more feasible scheméght against feedback noise
while keeping the feedback signal bounded. In future, wé fwither explore the connections
among information, estimation, and control in more genselps (such as MIMO channels
with feedback).

REFERENCES

[1] J.P.M. Schalkwijk and T. Kailath. A coding scheme for additive naibannels with feedback Part I: No bandwidth
constraint.IEEE Trans. Inform. TheoryiT-12:172-182, 1966.

[2] J.P.M. Schalkwijk. A coding scheme for additive noise channels feguback Part Il:Bandlimited signalfEEE Trans.
Inform. Theory IT-12:183-189, 1966.

[3] J. Omura. Optimum linear transmission of Analog data for channelsfegtiback IEEE Trans. Inform. Theoryl4:38-43,
1968.

[4] S.A. Butman. Linear feedback rate bounds for regressivarbia. IEEE Trans. Inform. TheoryT-22:363-366, 1976.

[5] T. Cover and S. Pombra. Gaussian feedback capa@&fE Trans. Inform. TheoryT-35:37-43, 1989.

[6] L.H. Ozarow. Random coding for Gaussian channels with feddbd&EE Trans. Inform. Theory36:17—22, 1988.

[7] G. Kramer. Feedback strategies for white Gaussian interfereatveorks. IEEE Trans. Inform. Theory48:1423-1438,
2002.

[8] A. Shahar-Doron and M. Feder. On a capacity achieving schemghé colored Gaussian channel with feedbaefoc.
ISIT, page 74, 2004.

[9] S. Tatikonda and S. Mitter. The capacity of channels with feedbHeEE Trans. Inform. Theorysubmitted 2001.

[10] S. Yang, A. Kavcic, and S. Tatikonda. Feedback capacity ofgpaenstrained Gaussian channels with memtggE
Trans. Inform. Theorysubmitted 2003.

[11] A. Sahai.Anytime Information TheoryPhD thesis, MIT, 2001.

[12] N. Elia. When Bode meets Shannon: Control-oriented feedbaskmmication schemeslEEE Trans. Autom. Conir.
49:1477-1488, 2004.

[13] Young-Han Kim. The feedback capacity of the first-order MA &aan channelhttp://arxiv.org/abs/cs/041103@004.

[14] S. Mitter and N. Newton. Information and entropy flow in the Kalmawe$filter. J. of Stat. Phys.118:145-176, 2005.
[15] H. Kwakernaak and R. Sivarl.inear Optimal Control Systemslohn Wiley & Sons, 1972.

[16] H. L. Van Trees.Detection, Estimation, and Modulation Theory, PartJohn Wiley and Sons, 1968.

[17] S. M. Kay. Fundamentals of Statistical Signal Processing I: Estimation TheBrgntice-Hall PTR, 1998.

[18] K. Gallivan, X. Rao, and P. Van Dooren. Singular riccati equatistabilizing large-scale systemisn. Alg. Appl, 2005.
[19] T. Kailath, A. Sayed, and B. Hassiblinear Estimation Prentice Hall, 2000.

[20] T. Cover and J. Thoma$lements of Information Thearyjohn Wiley & Sons, 1991.

[21] S. Tatikonda, and S. Mitter. Control over noisy channédEEE Trans. Autom. Contr49:1196 - 1201, 2004.

[22] N. Elia. The information cost of disturbance rejectidvediterranean Conference on Control and Automati205.

523



	--------------------
	Main Menu
	Foreword
	43 Years of Allerton
	Table of Contents
	List of Authors
	Search Help
	--------------------

